Naval Research Laboratory

Stennis Space Center, MS 39529-5004

KAREN J. DUDLEY
RoNALD A. WAGSTAFF

Ocean Acoustics Branch
Acoustics Division

May 8, 1995

Approved for public release; distribution is unlimited.

e e g e
DTG UALIVY

NRL/MR/7176--95-7583

Trend Removal to Improve the Performance
of a Fluctuation Sensitive Signal Processor

PEGIED 3




Form Approved

REPORT DOCUMENTATION PAGE OBM No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this coliection
of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 8, 1995 Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Trend Removal to Improve the Performance of a Fluctuation Sensitive Job Order No. 571521405
Signal Processor Program Element No.

6. AUTHOR(S) Project No. RJ35C51
Karen J. Dudley and Ronald A. Wagstaff Task No.

Accession No.
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Acoustics Division NRL/MR/7176--95-7583
Stennis Space Center, MS 39529-5004

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
800 N. Quincy St.
Arlington, VA 22217-5000

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The success of a fluctuation sensitive signal processor in detecting signals from submerged sources depends largely on the
fluctuation character of a signal of interest. If a trend, possibly caused by multipath propagation or changes in the source-receiver
distance, exists in the signal, large “apparent” amplitude fluctuations are introduced, and the fluctuation sensitive signal processor
may not distinguish the signal from the noise. This report presents a method for removing trends that may exist in the data and
demonstrates the resulting improvement in the performance of such a processor.

14. SUBJECT TERMS 15. NUMBER OF PAGES
19
signal processing, classification, ASW, underwater acoustics 16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified Unclassified SAR
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
i Prescribed by ANSI Std. 239-18
298-102




CONTENTS
ABSTRACT ...ttt sceestetesteseestestssssss st e ssansss s st s s ese s s s s b et s ae b e a e s bbb s b e b ar s eatsassba e e seeabeaesasasensssnasanean 1
INTRODUCGTION .....coiirietetrtrisretessesestesessessessissessessisssstosmessassssssssssessssssssssssossotossentessasssesssnssseseassasassans 1
BACKGROUND .....coririiiiiicinicietiieseeeessssssesesassssenessessssssssssasss eeaenereeee et s e se et et s aenenenaraanas 2
RESULTS .ttt cnne e sness et e sse st st esssse s s bbb e e s b s e s s h s b e b e b e b bt bt et e saassasnantesansantoneasanns 5
CONCLUSIONS ....cciierseeeneierreersssssstsstississsssassssissessassssssasssessssassssessossisssssssssentasssssssssssssssasnassesasensessassnss 8
ACKNOWLEDGMENTS ......coooinienirtiinnrnsessssssessssessesssssississississssssssssssssssssssssosssassesssensossssssssssssssssnssassssns 9
REFERENCGES ......coiiitetiintarneeitennensssesssstessesssssesssssssssssssmssissessesssssssssssassssessssssssssessensessssssssnsessessessanesns 9
LIST OF FIGURES. ......cotriiricititieestsinsessissisistssasssesssssesissssssssssssssssstessssssstsssssssasstssasestssesssasesssses 10

dcoession For | N

RTIS  GRARI T .
DTIC TAM g ¥
Unannounced o -
Justification e
By

Distribut Ion{”ﬁ:‘
Availability Codog

Avall andfor
Digt Speaial

iii | fﬁ/ ! g




Trend removal to improve the performance of a fluctuation
sensitive signal processor
By
Karen J. Dudley
Ronald A. Wagstaff

ABSTRACT

The success of a fluctuation sensitive signal processor in detecting signals from
submerged sources depends largely on the fluctuation character of the signal of interest. If a
trend, possibly caused by multipath propagation or changes in' the source-receiver distance,
exists in the signal, large “apparent” amplitude fluctuations are introduced, and the fluctuation
sensitive signal processor may not distinguish the signal from the noise. This paper presents a
method for removing trends that may exist in the data and demonstrates the resulting

improvement in the performance of such a processor.
INTRODUCTION

A processor's ability to detect a signal is greatly limited by the signal-to-noise ratio (S/N) of
the signals of interest. Signals of interest could include signals detected with seismometers,
sonar, radar, or magnetometers. This paper focuses on examples involving underwater acoustic
signals measured by a sonar system. If the S/N is small, it may be difficult for the signal
processor to extract the signal. Furthermore, if a trend exists in the signal, it may even be more
difficult to extract it, because in some processors the trend increases the noise-like "appearance”
of the signal. Thus, removing trends that exist in the data may improve the detection of low
S/N signals. Furthermore, in a fluctuation sensitive processor, trend removal enhances the
likelihood that the temporally stable signals can be attributed to a submerged source.

Acoustic background noise for some sonar systems is characterized as having high
amplitude temporal fluctuations, while the amplitudes of many signals of interest generally do
not vary much. Some processors discriminate against fluctuations in the data in order to
enhance the performance for signals. Unfortunately, a trend in the signal, possibly caused by
such things as time dependent changes in multipath propagation or source-receiver distance, can
appear to some processors as a large amplitude fluctuation and make it indistinguishable from
the noise. Removing these trends can aid these processors in separating signals from the
background noise and, thereby, improve the performance of the system.




BACKGROUND

Measured narrow band sonar data are given in Fig. 1 to illustrate the differing characteristics
of amplitude fluctuations of a signal time series and a noise time series. The x-axis represents
time and the y-axis represents amplitude level in decibels (dB). During the first 67 samples the
signal from a distant moving projector was being received by a towed array sonar. The
projector was then turned off, and background noise was acquired for the last 33 samples.
Notice that the signal has small amplitude fluctuations (less than about 2 dB), while the
background noise has relatively large amplitude fluctuations (about 7 dB). Thus, by using
signal processing algorithms that focus on the special features of the amplitude fluctuations of
the received acoustic power, it is possible to distinguish between amplitude stable signals and
noise. The objective of this study is to effectively and efficiently detrend the data in order to
enhance the performance of fluctuation sensitive signal processors. One such fluctuation
sensitive signal processing algorithm is Wagstaff's Integration Silencing PRocessor (WISPR)
[1]. That processor is used herein to illustrate the results of detrending the data before

processing.

A signal from an acoustic source can travel by way of many different propagation paths as
it travels from the source to a distant receiver. Much of the amplitude fluctuation character of
the received signal depends primarily on which propagation paths are taken. If the signal
arrives at a receiver without encountering the surface or bottom (e.g. via the deep sound
channel), there will be only small fluctuations in the time series of the signal. A temporally
stable signal that travels by way of propagation paths that have many surface and bottom
interactions will become amplitude modulated by the temporally varying channel and thus, have
a character more indicative of noise than of a temporally stable signal. On the other hand, a
stable signal that remains within the sonar channel, or has very few surface and bottom
interactions, will remain relatively modulation free and temporally stable. Hence, the temporal
stability of a signal can be used to infer whether or not the source is submerged. That can be a
very important clue for characterizing the source.

Unfortunately, a trend in the mean level of a signal can cause it to behave statistically in a
manner similar to noise, since the trend biases some of the important detection statistics in the
same manner as do high amplitude fluctuations. Amplitude fluctuations can have many causes.
Some of the major ones that are induced by the acoustic/oceanographic environment are:




a) interaction of the propagation paths with the irregular, moving sea surface,
b) wave induced temporal changes in the water depth above the source and the
receiver,
c) forward scattering from temporally variable inhomogeneities,
d) time dependent multipath interference, and
e) internal waves.
These and other mechanisms that are responsible for generating amplitude fluctuations are

discussed in detail in references 2, 3, and 4.

In addition to the fluctuation generation mechanisms listed above, trend producing
mechanisms such as the source entering or leaving shadow zones or convergence zones and
changes in source-receiver distances, can induce "apparent” and real amplitude fluctuations.
Such apparent fluctuations can interfere with and degrade a processor's performance, since the
affected signals can then have some of the same statistical characteristics as the background
noise. Figure 2 illustrates how a trend in acoustic data might appear in a time series. The
abscissa represents increasing time, and the ordinate represents increasing level in dB. The
thick-line curve represents the trend in the data, while the other curve is the time series of the
data that possesses the trend. The overall range of the data, including the trend, is about 25 dB.
However, if the trend was to be removed, the range of the data would be reduced to about 10
dB. That would be more characteristic of a stable signal and could result in a significant
increase in the probability of the signal processor detecting the signal.

The remainder of this paper will focus on a simple filtering technique for removing a trend
in a time series and provide a quantitative evaluation of the improvement in a particular signal
processor. The processor which has been chosen to illustrate the improvement is the WISPR
processor [1] because it uses the fluctuation character of the signal compared to the fluctuation
character of the noise to determine whether the signal is from a submerged source. Hence, it
will be shown that it is important to remove trends in order to improve the sensitivity and the
accuracy of the submerged source determination by the WISPR processor. The implication is
that what is good for the WISPR processor is probably also good for other fluctuation sensitive

signal processors.

There are many different types of statistics and algorithms that have been used as the basis
for acoustic signal processors. The power average is probably the most common. In the
calculations reported below, the average power level is referred to as AVGPR. As reported by




Wagstaff and Berrou [5], the average power is not necessarily the best statistic for some types
of data, especially underwater acoustic data, since the average power level is biased towards the
higher amplitude levels. An attractive statistic for acoustic data for some S/N enhancement
applications are and submerged source signal identification is the WISPR level. Wagstaff [1]
has also shown that a difference statistic, herein referred to as the DELTA level, is a good
statistic for detecting stable tonals. Such designation is sometime important, because some
amplitude stable signals are known to be due to a source that is submerged. DELTA is obtained
by subtracting the WISPR level from the AVGPR level. Thus,

DELTA = AVGPR - WISPR. - (1)
DELTA can also be used as a measure of the fluctuation content of a time series.

In the results that follow, DELTA will be used as the detector of amplitude fluctuations.
When the signal is well behaved (i.e. the signal does not vary much in amplitude), DELTA will
be small (e.g. less than 1 or 2 dB). However, a trend in the signal can cause the amplitude
fluctuations to appear to be larger than they actually are, and the signal can appear as noise to the
processor. In such a case, DELTA would be relatively large (e.g. about 5-10 dB). Removing
trends that may exist in the mean level of the signal and noise can improve the processor's
ability to distinguish between the signal and the noise by significantly reducing the DELTA for
signal, but not for noise. A simple and effective method for filtering out a trend in a time series
and producing a corresponding zero mean output time series is given by the following equation

for a running filter:

K . 1 i+n .
Xi = Xj - 0+l j=i-n X_] , 1=n+l, n+2... 2)
where X is the the point in a signal or noise level time series (in dB),

Xj' is the corresponding element of a zero mean signal or noise level time

series (also in dB),
2n +1 is the length of the running filter.

Equation 2 utilizes a sliding decibel window averaging technique to remove a trend in a

time series. It is nonlinear because the values are in decibels, not power. The size of the



window is variable. The time series of the decibel levels in the filter window are summed and
an average decibel level is obtained. A new data set is created by substituting this average level
for the midpoint of the window of the original data. This procedure is repeated for the entire
data set by sliding the window in time by one point after each substitution. Finally, the new set
of data points is subtracted from the original set to obtain a zero mean level time series that has

the trend removed.

Figure 3 gives a functional block diagram of the method used for the current analysis,
including removing trends that exist in a data set. Since each point on an averaged spectral plot
represents the average of the time series for a particular frequency bin, the detrending procedure
must be repeated for the time series of each frequency bin. After the detrending method has
been applied to each level time series in each frequency bin, the AVGPR and WISPR statistics
are obtained. Finally, the difference, DELTA, between the a AVGPR and WISPR statistics is
used to measure the success of the detrending algorithm, where a decrease in DELTA represents
an improvement in the WISPR processor‘s performance. This procedure is followed for
different filter window sizes, and the results are compared on the basis of the DELTA value and
a visual evaluation of how well the detrended time series preserves the fluctuation character of
the original time series (ignoring possible trends that were removed by the filter).

RESULTS

Two time series of signal and two time series of background noise, both from a common
data set, were analyzed in detail ( Figs. 4 and 5). Signal Case 1 (lefthand side of Fig. 4) was
selected because of its dramatic trend, which causes a variation in amplitude that is on the order
of 20 dB. Signal Case 2 (lefthand side of Fig. 5) was chosen to demonstrate the effect of
detrending on a smaller trend, with only a 10 dB variation in amplitude. Both noise cases
(righthand side of Figs. 4 and 5) were selected because they display the large amplitude

fluctuations that are typical of noise.

Prior to detrending, Signal Case 1 of Fig. 4 has a DELTA of 4.89 dB. This statistic is of
the same order of magnitude of what would be expected for noise, although it is known that the
time series is actually a signal from a submerged source. The trend in the data is responsible for
biasing the statistic upward. With the detrending algorithm set for a window size of 31, the
DELTA is reduced to 0.77 dB (Fig. 4, Signal Case 1). The detrended DELTA is now indicative
of a stable signal from a submerged source. Similar results due to the detrender are apparent in




Signal Case 2 (Fig. 5). Again, the DELTA is reduced significantly with the detrender set for
a window size of 31. The DELTA is reduced from 2.31 dB to 0.335 dB. Hence the final

statistic is more representative of an ideal signal from a submerged source.

The question now arises as to how the detrender affects the background noise. In order for
the trend removal process to be of value, there should not be as significant a reduction in the
DELTA for the noise as there was for the signal. Two noise cases are used to demonstrate that
there is not a significant reduction in DELTA , when the detrending algorithm is used.

The first noise case (Fig. 4, Noise Case 1) has a DELTA of 7.22 dB without being
detrended. With the detrending algorithm set for a window size of 31, the DELTA is reduced to
5.85 dB, which is not a significant reduction and is still indicative of noise.

The second noise case (see Fig. 5, Noise Case 2) demonstrates results similar to the first
noise case. The detrending algorithm set at window size 31 produces a reduction from 5.40 dB
to 4.58 dB in the DELTA . This final statistic, as in the previous noise case, is still indicative of
noise. The appearance of both of the detrended noise time series suggests that the filter
preserved the noise-like character of the time series, as was desired, and the test statistics
indicate that the resulting noise would appear noise-like to the WISPR processor.

Both Figs. 4 and 5 show the results of detrending for filter window sizes varying from 11
to 51. Although all of the window sizes removed the trend, there are differences in the
fluctuation character of the time series that result. A small window size causes an overall
reduction in amplitude of the fluctuations in the time series, and does not preserve the "true
character” of the details of the fluctuations. A large window size causes many of the data points
to be lost, since half of the filter size is lost at the start of the time series due to the averaging
technique, and half is similarly lost at the end. A window size of 31 was selected for the
analysis, herein, since it more accurately preserves the original details of the fluctuations while

minimizing the loss of data.

When AVGPR, WISPR, and DELTA are plotted as functions of frequency, a tri-level
spectral plot is obtained (Fig. 6). In such a plot, the AVGPR statistic appears as the top curve
in the spectral plot, because the average power is biased towards the higher values. The
WISPR statistic, on the other hand, is biased toward the lower values. It is often about 8 to 9
dB less than the curve for the AVGPR statistic. The WISPR result is the second curve from the




top of Fig. 6. The difference between these two statistics, DELTA (order of 8 to 9 dB), is
plotted at the bottom of the plot to avoid confusing it with the previous two curves. A threshold
of 1.5 dB for the levels in the DELTA curve has been empirically chosen (a result arrived at
from processing and analyzing many data sets that contain stable submerged source signals in
ambient noise) to distinguish between stable signals and background noise. A value of DELTA
that is less than the threshold (1.5 dB) can be used to indicate a stable signal, and a value of
DELTA, that is above the threshold can be used to indicate noise.

Figure 7 illustrates the time series plots for select frequency bins in the spectral plot of Fig.
6. These time series plots have been chosen for consideration-in greater detail to demonstrate

the nature of the improved results seen in Fig. 6.

The results of trend removal in the time series for both the noise and the signals in Fig. 4
and Fig. 5 were very favorable. Similarly, trend removal should show favorable results for the
signals and noise in Fig. 6. When the trend is removed, using a window size of 31, there was
an obvious improvement in the DELTA curve (bottom curve), since these are about four more
acoustic signals in it than are appearing in the non-detrended DELTA curve (second curve from
the bottom). At frequency bin A, there is an apparent signal in the AVGPR and WISPR curves
(apper two curves in Fig. 6). The non-detrended DELTA curve (top DELTA curve in Fig. 6)
shows this to be a stable signal, since it is below the threshold of 1.5 dB. After trend removal,
that same signal in the new DELTA curve is still below the threshold (Fig. 6, frequency bin A
of the bottom DELTA curve). The time series of this frequency bin (the top plot in Fig. 7)
indicates that this is indeed a signal with low amplitude fluctuations. The DELTA (A) is below
the threshold for both the non-detrended case (top curve) and the detrended case (bottom curve),
but there was an improvement after trend removal, because the DELTA was reduced from 0.72
dB to 0.17 dB (see the original and detrended time series for frequency bin A in Fig. 7).

The AVGPR and the WISPR curves indicate another apparent signal at frequency bin
B, but it is not below the 1.5 dB threshold in the non-detrended DELTA curve. However, the
signal does pass the threshold in the DELTA curve after trend removal (Fig. 6, frequency bin B
of the bottom DELTA curve). The time series of frequency bin B of Fig. 7 shows that there is a
definite trend before trend removal, and the DELTA (A) is relatively large at 11.46 dB. After
trend removal, the DELTA is reduced to 0.24 dB, which is well below the 1.5 dB threshold that
indicates an amplitude stable signal.




An arbitrary noise frequency bin, C, was chosen to show that trend removal does not
greatly alter the processor's performance for noise cases (make the time series more signal like
and generate false alarms). Both DELTA curves in Fig. 6 indicate that there is background
noise in frequency bin C. The time series of the data in this frequency bin (third plot of Fig. 7)
shows a small change after trend removal with a slight reduction in DELTA from 8.99 dB to
8.07 dB. Both of these DELTA values are well above the 1.5 dB threshold and indicate that
this particular frequency bin contains a time series of data that is indicative of background noise.

As a final example, consider the apparent signal at frequency bin D that does not have a
DELTA curve that is indicative of a stable signal in the non-detrended DELTA curve of Fig. 6.
The detrended DELTA, on the other hand, shows that this is a fairly stable signal . Again, the
time series in the bottom plot of Fig. 7 shows that there is a trend in the data of frequency bin D,
thus resulting in a relatively high value of DELTA. After trend removal, the DELTA was
reduced from 4.69 dB to 1.48 dB and passes the test for a stable signal . Hence, removing the
trend caused the DELTA curve to indicate the existence of a stable tonal signal. Without trend
removal, the processor could not distinguish this signal from the noise. Furthermore, the
detrended DELTA curve shows that the high level signal that is midway between bin B and bin
D of Fig. 6 is stable and that there are two more stable signals near the signal at bin D that were
not identified as stable signals in the non-detrended DELTA curve.

All of the signals in Fig. 6 were of sufficiently high S/N to be easily detected in the
AVGPR curve. In such a case, the detrending provided no added value for increasing the S/N.
The real value of detrending and the DELTA curve is in identifying those signals that, because
of a high degree of amplitude stablilty, the WISPR processor can attribute them to be due to a
submerged source. That very important function was significantly enhanced by detrending the
data before being input to the WISPR processor.

CONCLUSIONS

The detrending algorithm significantly decreases the DELTA statistic for signals, but it
does not significantly change the DELTA for background noise. Hence, the detrending
algorithm can be used to remove trends in the means of both signal and noise data to increase a
fluctuation sensitive signal processor's ability to identify amplitude stable signals from among
the noise background.
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Figure 7. Original (top curve) and detrended (bottom curve) time series for three

signal cases (A,B, and D) and one noise case (C) corresponding to the frequency
bins indicated in Fig. 6. DELTA is represented by the symbol A.
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